From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

نویسندگان

  • Johannes Feldmann
  • Anders Levermann
چکیده

Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheetshelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Heinrich Events to cyclic ice streaming: the grow-and-surge instability in the Parallel Ice Sheet Model

Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermo-mechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a non-linear stress-balanced ...

متن کامل

Results From the Ice-Sheet Model Intercomparison Project-Heinrich Event INtercOmparison (ISMIP HEINO)

Results from the Heinrich Event INtercOmparison (HEINO) topic of the Ice-Sheet Model Intercomparison Project (ISMIP) are presented. ISMIP HEINO was designed to explore internal largescale ice-sheet instabilities in different contemporary ice-sheet models. These instabilities are of interest because they are a possible cause of Heinrich events. A simplified geometry experiment reproduces the mai...

متن کامل

Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes

Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep w...

متن کامل

Large-scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate-system model

[1] Heinrich events, related to large-scale surges of the Laurentide ice sheet, represent one of the most dramatic types of abrupt climate change occurring during the last glacial. Here, using a coupled atmosphere-ocean-biosphereice sheet model, we simulate quasi-periodic large-scale surges from the Laurentide ice sheet. The average time between simulated events is about 7,000 yrs, while the su...

متن کامل

Ice-shelf collapse from subsurface warming as a trigger for Heinrich events.

Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017